(\pm) 4 β -AMINO-2 α ,3 α -DIHYDROXY-1 β -CYCLOPENTANEMETHANOL HYDROCHLORIDE. CARBOCYCLIC RIBOFURANOSYLAMINE FOR THE SYNTHESIS OF CARBOCYCLIC NUCLEOSIDES.

Richard C. Cermak and Robert Vince*
Department of Medicinal Chemistry, College of Pharmacy
University of Minnesota, Minneapolis, MN 55455

<u>Abstract</u>. Carbocyclic ribofuranosylamine, a key intermediate for the synthesis of carbocycli ribonucleosides, was synthesized by a facile route from the lactam, 2-azabicyclo[2.2.1]hept-5-ene-3-one.

Carbocyclic analogues of purine and pyrimidine nucleosides, in which a cyclopentane ring replaces the furanose moiety, have been the object of the synthetic efforts of a number of groups. The antitumor, antimicrobial, and antiviral properties have generated considerable interest in the biological properties of carbocyclic nucleosides. Carbocyclic ribofuranosylamine ($\underline{6}$) is the key intermediate for the synthesis of carbocyclic ribonucleosides. Present procedures for the synthesis of $\underline{6}$ are either long and tedious, or require the separation of isomers. The present account represents a facile direct route to carbocyclic ribonucleosides.

A catalytic osmium tetroxide <u>cis</u> dihydroxylation of 2-azabicyclo[2.2.1]hept-5-ene-3-one (1) 4b,7 was employed using N-methylmorpholine N-oxide 8 to regenerate 0s0 $_4$ during gly-colization (t-butyl alcohol/H $_2$ 0, 50°C). The glycolization product $\underline{2}$ (mp 173-180°C dec.)

was esterified (methanol/HCl) and gave methyl (\pm)-4 β -amino-2 α ,3 α -dihydroxy-1 β -cyclopentane-carboxylate hydrochloride ($\underline{3}$) (80% from $\underline{1}$), mp 151-153°. Acetylation of $\underline{3}$ with acetic ahydride in pyridine gave methyl (\pm)-4 β -acetamido-2 α ,3 α -diacetoxy-1 β -cyclopentylcarboxylate ($\underline{4}$) (89% from ethyl acetate-hexane, mp 116-117°, lit. 5 mp 116°). Reduction of the methyl ester of $\underline{5}$ with Ca(BH₄)₂ (THF, rt, 18 hr) gave, after acetylation, ($\underline{+}$) 4 β -acetamido-2 α ,2 α -diacetoxy-1 β -cyclopentanemethyl acetate ($\underline{5}$) (78% from ethyl acetate-hexane, mp 94-95°). Acid hydrolysis of $\underline{5}$ gave the aminetriol (\pm) 4 β -amino-2 α ,3 α -dihydroxy-1 β -cyclopentanemethanol hydrochloride ($\underline{6}$) which is easily converted to carbocyclic nucleosides as previously described. 5,6

Acknowledgements:

This investigation was supported by Grant CA 23263 from the National Cancer Institute, Department of Health, Education, and Welfare.

References:

- (a) Y.F. Shealy, J.D. Clayton, and C.A. O'Dell, J. Heterocycl. Chem., 10, 601 (1973); and references therein; (b) A. Holy, Collect. Czech. Chem. Commun., 41, 647, 2096 (1976); (c) R. Marumoto, Y. Yoshioka, Y. Furukawa, and M. Honjo, Chem. Pharm. Bull., 24, 2624 (1976); (d) A.K. Saksena, Tetrahedron Letts., 21, 133 (1980).
- 2. R. Vince and S. Daluge, unpublished results.
- 3. R.J. Suhadolnik, "Nucleosides as Biological Probes", Wiley, New York, NY, 1979, pp. 147-149.
- (a) R. Vince and S. Daluge, <u>J. Med. Chem.</u>, <u>20</u>, 612 (1977); (b) S. Daluge and R. Vince, J. Org. Chem., 43, 2311 (1978); H.J. Lee and R. Vince, <u>J. Pharm. Sci.</u>, <u>69</u>, 1019 (1980).
- 5. Y.F. Shealy and J.D. Clayton, J. Amer. Chem. Soc., 91, 3075 (1969).
- 6. R. Vince and S. Daluge, <u>J. Org. Chem</u>, <u>45</u>, 531 (1980).
- 7. J.C. Jagt and A.M. Van Leusen, J. Org. Chem., 39, 564 (1974).
- 8. V. VanRheenen, R.C. Kelly, and D.Y. Cha, Tetrahedron Lett., 1973 (1976).

(Received in USA 10 March 1981)